Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7776, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012132

RESUMEN

Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.


Asunto(s)
Nematospiroides dubius , Trichostrongyloidea , Ratones , Animales , Interacciones Huésped-Parásitos/fisiología , Nematospiroides dubius/genética
2.
Nature ; 450(7171): 887-92, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-18004301

RESUMEN

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods-recursive partitioning and regression-to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; P(combined) = 2.01 x 10(-19) and 2.35 x 10(-13), respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Genes MHC Clase I/genética , Predisposición Genética a la Enfermedad/genética , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Alelos , Estudios de Casos y Controles , Bases de Datos Genéticas , Frecuencia de los Genes , Genes MHC Clase II/genética , Genotipo , Antígenos HLA-DQ/genética , Cadenas beta de HLA-DQ , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Polimorfismo de Nucleótido Simple/genética , Tamaño de la Muestra , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...